The average duration between the time of problem detection and th

The average duration between the time of problem detection and the time of starting reexploration was 54 min in 7 cases, and other 2 cases were delayed to enter the operating room

which had been occupied by other cases of major trauma. Only two flaps were lost completely, two patients developed narrowing selleckchem at the junction of cervical esophagus and thoracic esophagus. The rate of salvage for intestinal flap is apparently higher than those reported in the literature. In the postoperative management of microsurgery in ICU, telecommunication can help to reduce the ischemia time after vascular compromise in the transfer of free intestinal flap. Telecommunication is really an easy and effective tool in improving the outcome of reconstructive surgery. © 2012 Wiley Periodicals, Inc. Microsurgery, 2012. “
“Despite the advantages of a fibula flap, many surgeons would often be hesitant in its use in patients with a history of distal fibular fracture. The chief concern is the potential vascular damage sustained during the injury. From our experience, however, we noticed that the blood supply this website of various components of a fibula flap rarely relies on its distal part alone. Avoiding the use of this flap may unnecessarily forgo the optimal reconstructive option in many patients. Free fibula flap was harvested from a 41-year-old man who had a history of left fibula fracture 10 years before surgery.

The fracture was treated with open reduction with internal fixation. The plate was removed 1 year after the trauma surgery. We used this fractured and healed fibula to reconstruct the intraoral and mandibular defect after tumor extirpation. Unoprostone The harvesting process was straight-forward and the flap survived uneventfully. On the basis of our experience and current evidence in the literature, we believe that a history of previous fibular fracture should not be considered as an absolute contraindication for free fibular flap harvesting. With a good knowledge of the lower limb anatomy and appropriate patient selection, the fibular flap can still be a safe

option that incurs no additional risk. © 2014 Wiley Periodicals, Inc. Microsurgery, 2014. “
“Eleven patients over 40 years old, with median nerve lesions at the wrist, were operated on an average of 5 months after their injury. In six patients, the median nerve was repaired using a polypropylene mesh applied to secure the nerve stumps in contact, thereby allowing for direct repair with microsutures. Six patients had their median nerve repaired with sural grafts. The average gap length was 2.8 cm for the mesh repair, whereas it was 3.7 cm for the graft repair group. Eighteen months after surgery, pressure thresholds were perceived in the index and thumb pulp by all six patients with a mesh repair but in only two of five patients with a graft repair. Five in the mesh repair group recovered function in the abductor pollicis brevis muscle, versus none in the graft group.

In vitro suppression assays were performed by first inducing Foxp

In vitro suppression assays were performed by first inducing Foxp3 expression in purified CD4+ Foxp3− T cells isolated from Foxp3gfp mice. Three days after activation, converted Foxp3+ cells were isolated from activated cell mixtures using FACS sorting, and then mixed with CD4+Foxp3− responder cells, γ-irradiated T-depleted splenocytes, and soluble anti-CD3 (1 μg/ml) for 4–5 days. Cell proliferation was assayed by [3H]thymidine uptake as previously described.2 To measure intracellular staining selleck compound of Foxp3, cultured cells were washed with FACS staining buffer

(2% fetal bovine serum in phosphate-buffered saline) twice, fixed in 4% paraformaldehyde solution (electron microscope-grade) for 10 min, and then permeabilized in Triton X-100 solution overnight. Permeabilized cells were stained with fluorescent conjugated anti-Foxp3 antibody diluted in permeabilization buffer for 3 hr and then washed in permeabilization buffer twice. Acquisition of FACS data was performed with a FACSCalibur (Beckton-Dickinson, San Jose, CA) and FlowJo software (Tree star, Ashland, OR) was used for FACS analysis.

All plots are drawn on standard log scale. Cells pellets were incubated in modified RIPA buffer (10 mm Tris–HCl, 150 mm NaCl, 0.5% Nonidet P-40, 0.1% deoxycholate, and 1 × protease inhibitor cocktail, Roche, Indianapolis, IN) on ice for 20 min. Protein was quantified using the Bradford method (Pierce, Rockford, IL). Protein samples (4–6 μg) were run on 4–12% bis-tris sodium dodecyl sulphate–polyacrylamide VX-770 purchase Thymidine kinase gel electrophoresis (Invitrogen, Carlsbad, CA), and then transferred onto polyvinylidene fluoride membranes (Invitrogen). Non-fat dried milk solution (5% in Tris-buffered saline with Tween-20) was used for blocking. Blocked membranes were incubated with anti-Smad3 (1 : 1000),

anti-Smad6/7 (1 : 4000) overnight at 4°. Anti-rabbit immunoglobulin G antibody-HRP (1 : 10 000) was used as a secondary antibody for 2 hr at room temperature. Western bands were visualized using an enhanced chemiluminescence detection kit (West-Pico, Pierce). Relative amounts of loading proteins were normalized to the levels of tubulin on the same membrane. Total RNA from CD4+ T cells was isolated using an RNeasy mini-prep kit (Qiagen, Valencia, CA). Total RNA (1 μg) was reverse transcribed to first-strand complementary DNA by incubation with oligo-dT primer for 40 min in the presence of SuperScript II reverse transcriptase (Invitrogen). For measuring the messenger RNA level of Foxp3, Taqman Gene Expression Assay (Applied Biosystems, Foster City, CA) was used. Quantitative polymerase chain reaction (PCR) was performed on a 7900HT sequence detection system (Applied Biosystems). All of the protocols and primer design for the DNA methylation analysis of the Foxp3 promoter region were described previously.6 Briefly, genomic DNA was purified using a DNeasy mini-prep kit (Qiagen).

The presence of mutations in the katG315 associated with isoniazi

The presence of mutations in the katG315 associated with isoniazid resistance, in rpoB516 associated with rifampicin resistance, and in embB306 associated with ethambutol resistance was determined by multiplex allele-specific PCR (MAS-PCR) amplification. The oligonucleotide primers and reaction conditions used were described previously (Mokrousov et al. 2002a, b, 2003). The amplification conditions for the detection of the

rpoB526 and rpoB531 mutations by nested allele-specific PCR (NAS-PCR) were described previously (Mokrousov et al., 2003). The rationale of AS-PCR is that a single nucleotide mismatch at the 3′ extremity of the annealed forward primer renders Taq polymerase unable to extend the primer under appropriate conditions. The difference between these two alleles can be a single nucleotide polymorphism deletion or insertion. So, the absence of Transferase inhibitor the specific PCR product reveals a deviation from the wild type (Ferrie et al., 1992). This was

done by direct sequencing of the PCR products of the six MDR-TB-resistant isolates using the ABI Prism buy KU-60019 3130 XL genetic analyzer (Applied Biosystems, Foster City, CA). Sequence analysis was done using chromaspro 1.5 software. The DST for isoniazid, rifampicin, and ethambutol performed in the TB Center showed that 14 (14%) isolates were resistant to one or more of the antituberculosis drugs under investigation (Table 1). Nineteen isolates (19%) showed resistance by PCR assays to at least one of the three drugs under investigation (Table 2). The DNA sequencing of the tested gene regions confirmed the presence of the detected point mutations in all six MDR-TB isolates. The rates of concordance of the PCR with the DST method were 71.4%, 54.5%, and 44.4% for isoniazid, rifampicin, and ethambutol, respectively. Fourteen isolates (14%) were resistant to isoniazid due to mutations in the katG315, and four isoniazid-resistant isolates were phenotypically wild type. Sequencing revealed that the mutation in the isoniazid resistance isolates were AGCACC in all six MDR which is a serine-to-threonine

mutation at codon 315. Seven and 11 rifampicin-resistant strains Selleckchem Atezolizumab were found by DST and the molecular method, respectively (Table 1). This is a very high MDR-TB rate, as the 100 strains tested were from newly diagnosed patients. Five strains phenotypically rifampicin susceptible were identified by the MAS-PCR method as resistant due to the presence of four mutations in ropB516 [GAC(Asp) GTC(Val)], and one in ropB531 [TCG(Ser) TTG(Leu)], which were confirmed by sequencing. The mutations in the rpoB526 (one strain, 1%) and rpoB531 (six strains, 6%) were confirmed by sequencing the 250-bp central region of the rpoB gene for three MDR-TB isolates at rpoB531 and at rpoB516 for the other three MDR-TB isolates.

Hence, it

Hence, it Protein Tyrosine Kinase inhibitor is likely that the cross-talk between dNK cells and EVT either through ligation of activating and/or inhibitory KIR to their cognate ligands HLA-C and HLA-G or the secretion of a large panel of soluble factors by dNK cells contributes directly or indirectly to vasculature remodelling.[45, 75, 76] Immunotolerance must play a pivotal role in providing the immune privilege during pregnancy. Fetal trophoblasts do not express the classical HLA-A

or B or MHC-II molecules that clearly favour their protection from T-cell attack at the maternal decidua. The majority of CD8pos and CD4pos T cells found in the decidua show an induced Treg cell phenotype. However, the exact mechanism responsible for the induction of Treg cells is not yet clearly defined. It is possible that dNK cells and decidual DC participate actively in generating this tolerogenic status. Cellular cross-talks between dNK cells, decidual macrophages/DC and T cells at the fetal–maternal interface[22, 77] might result in Treg cell induction. The tolerant microenvironment Angiogenesis inhibitor can be installed through active mechanisms such as the interaction between cytotoxic T lymphocyte antigen-4 and its ligand or indirect mechanisms implicating immunoregulatory molecules such as indoleamine 2, 3-dioxygenase, TGF-β or IL-10. Significantly lower numbers of dNK cells and decidual CD4 Treg cells have been linked to spontaneous abortion, further supporting Bcl-w the implication

of these cells in fetal tolerance.[78-80] Infection with human cytomegalovirus (HCMV), a member of the Herpesviridae family, is usually asymptomatic in healthy adults but can represent a real threat in immunocompromised patients. Primary HCMV infection is usually followed by the establishment of lifelong latency and sporadic reactivation phases. The role of pNK cells in controlling viral infections was supported by findings that NK-cell-deficient patients are highly susceptible to viral infections.[81, 82] The pNK cells are able to recognize and kill virus-infected cells through secretion of lytic granules containing TNF-related apoptosis-inducing

ligand perforin and granzymes, Fas ligand and tumour necrosis factor-related apoptosis-inducing ligand.[2] Recent work both in healthy adults and immunocompromised patients demonstrated that HCMV infection/reactivation could imprint the NK cell receptor repertoire. HCMV infection was associated with an increased CD94/NKG2C and KIR-positive pNK cell population that expresses low levels of NKp30, NKp46 activating receptors and the CD94/NKG2A inhibitory receptor.[83-88] Human cytomegalovirus infection is the commonest cause of congenital viral infection, affecting > 1% of live births. Primary maternal infection during the first trimester of pregnancy can lead to 40–50% of vertical transplacental transmission with permanent severe birth sequelae in almost 15% of congenitally infected newborns (i.e.

The p DOM vaccine construct (Fig 1) has been described previousl

The p.DOM vaccine construct (Fig. 1) has been described previously 26. The construct encodes the first domain, DOM, of FrC from TT (TT865–1120) covalently fused to an N-terminal VH leader of the IgM from the mouse BCL1 lymphoma. The p.DOM-PSMA27, pDOM-PSMA663, and pDOM-PSMA711 vaccines encode the PSMA27, PSMA663, and PSMA711 HLA-A*0201-binding epitopes fused to the C-terminus of DOM. They were created by amplification of the p.DOM vaccine insert by PCR with the F1 forward primer and a reverse primer encoding the epitope; R1, R2, and R3 for PSMA27, PSMA663, and PSMA711 respectively. Primer sequences are listed in Table 1. The full-length human PSMA vaccines which encode the full-length protein (750 residues in total; 1–19 intracellular,

mTOR inhibitor 20–44 transmembrane

and 45–750 extracellular) were created by PCR using human prostate cDNA generated from total RNA (Clontech) with the Superscript First-Strand cDNA Synthesis kit (Invitrogen, Paisley, UK) as a template. The F2 and R4 primers were used to amplify the full-length PSMA sequence. The PSMA gene was fused to the leader sequence in two steps. The first fragment was made using the p.DOM construct as a template with the F1 primer and the R5 reverse selleck chemicals llc primer, resulting in a BCL1 fragment with a PSMA overhang. The second fragment was generated by PCR using the PSMA cDNA as a template, F3 and R6 primers, resulting in a PSMA fragment with a BCL1 overhang upstream. These two DNA fragments were joined using the primers F1 and R6. This fragment was modified using the F4 and R7 primers to incorporate restriction sites. To allow fusion of the DOM sequence to PSMA, the BCL1-PSMA DNA fragment was also modified, using the F1 and R8 primers. Phospholipase D1 Purified PCR products were digested and inserted between the HindIII (or BamHI for p.PSMA) and NotI restriction sites in the pcDNA3.1 plasmid (Invitrogen). In the case of the p.PSMA-DOM construct, the digested PCR product was inserted between HindIII and NotI restriction sites upstream of the DOM sequence in a modified version of pcDNA3.1.

Vaccines were prepared and verified as described previously 50. The ability of the DNA vaccines to prime PSMA peptide-specific CD8+ T cells in individual HHD mice was assessed ex vivo using an IFN-γ ELISpot assay (BD ELISpot Set, BD Pharmingen, San Diego, CA). Briefly, viable mononuclear cells from individual splenocyte preparations were isolated by density gradient centrifugation. Cells (2×105 cells/well) were incubated in complete medium for 24 h with the corresponding PSMA HLA-A*0201 peptide (10−6–10−9 M) to assess CD8+ T-cell responses or with the p30 peptide (10−6 M) to evaluate CD4+ T-cell responses. Control wells were incubated without peptide to assess background. Samples were plated in triplicate and the mean of the readings is expressed as SFCs per million (106) cells. To assess avidity, the number of SFC/106 cells at the peptide concentration inducing the greatest response was assigned a value of 100%.

They experimentally infected birds from Alabama with a local Myco

They experimentally infected birds from Alabama with a local Mycoplasma strain. As a comparison,

they also infected house finches from Arizona, a region where house finches have never experienced the disease. As expected, Alabama birds harboured a lower bacterial load in the conjunctivae compared with Arizona finches (Figure 4b). Between-population differences in bacterial load were mirrored by a differential pattern of gene expression in response to the experimental infection. Among the 52 identified genes with known function, 38% and 21% showed a post-infection expression change in Arizona and Alabama, respectively. This post-infection expression change was due to genes in Arizona birds being more down-regulated (80% of 20 genes) compared with Alabama individuals (27% of 11 genes). PI3K inhibitor When focusing on experimentally infected birds only and looking at the post-infection gene expression changes, all 52 genes were differentially expressed in

birds from the two populations and again this was due to Arizona individuals having 90% of these genes down-regulated post-infection (10% in Alabama birds). Among the different genes with differential expression, 10 were directly linked with immunity (Figure 4c). Nine of these 10 immune genes were down-regulated in birds from Arizona. The tenth gene (complement factor H) was up-regulated in Arizona birds. However, this gene restricts the activation of the complement Selleckchem Poziotinib cascade and is therefore Janus kinase (JAK) functionally consistent with the expression pattern of the other immune genes. Overall, birds from Arizona showed a pattern of down-regulation of their immune response. This pattern nicely fits with the known immunosuppressive action of Mycoplasma on their chicken hosts. After 12 years of exposure to the pathogen, house finches were thus able to overcome the infection-induced immunosuppression

and restore an effective immune protection. To further confirm this view, Bonneaud et al. [71] also compared the pattern of gene expression between birds from Alabama sampled in 2000, after only 5 years of exposure to the bacterium. The gene expression of these birds resembled the 2007 Arizona birds more than the 2007 Alabama individuals, strongly suggesting that the observed pattern was due to a microevolutionary change that occurred with time rather than a geographical (environmental-based) variation. A further study comparing the pattern of gene expression in birds from Alabama and Arizona at 3 and 14 days post-infection [72] concluded a possible role of innate immunity in Mycoplasma resistance.

Lactic acid in vaginal secretions originates from the activity of

Lactic acid in vaginal secretions originates from the activity of both the vaginal mucosa (Gorodeski et al., 2005) and the action of Lactobacillus sp. and possibly also by other bacterial species (Zhou et al., 2004). Glucose selleck products in the intermediate vaginal epithelial cell layer under the influence of estrogen

is metabolized under anaerobic conditions to pyruvic acid and then to lactic acid. The lactic acid diffuses out of the cells and accumulates in the extracellular fluid. Similarly, Lactobacillus sp. convert extracellular glucose into lactic acid by anaerobic glycolysis. The activation of polymorphonuclear leukocytes and monocytes/macrophages is an energy-dependent process and stimulates the induction of glycolysis. Thus, inflammation is also associated with localized lactic acid release (Haji-Michael et al., 1999). Similarly, lactic acid is produced and released into the extracellular environment by many malignant tumors due to both accelerated aerobic glycolysis (the Warburg effect) (Warburg, 1961) and by anaerobic hypoxia-driven

glycolysis (Elson et al., 2000). The consequence of lactic acid release on immune system activities has not received much research attention. In a series of elegant experiments, Shime et al. (2008) demonstrated that a human lung adenocarcinoma cell line (CADO-LC10 cells) secreted lactic acid into the culture medium. While the lactic acid released by itself PD0325901 manufacturer had no effect on cytokine induction, in the concomitant presence of a Toll-like receptor (TLR) ligand, lactic acid stimulated the production of interleukin-23 (IL-23) by monocytes/macrophages. Conversely, there was no effect of lactic acid on

TLR-stimulated IL-12 transcription. IL-12 and IL-23 are heterodimeric cytokines that share a p40 subunit. In IL-12, p40 combines with a p35 subunit; in IL-23, p40 combines with p19 (Langrish et al., 2004). Thus, lactic acid enhanced p40 and p19 transcription drastically. The stimulation of IL-23 production required the presence Atazanavir of a lactate ion in its transportable form; the neutralized lactate anion or the presence of an equivalent proton concentration from a different acid did not enhance IL-23 release (Shime et al., 2008). IL-23 and IL-12 have unique effects on T helper lymphocyte subsets. IL-12 induces T cell differentiation into the Th1 CD4+ T cell subset. The release of interferon-γ (IFN-γ) by Th1 cells and natural killer cells activates macrophages to destroy intracellular microbial pathogens (Goriely et al., 2008). IFN-γ also acts on B lymphocytes to inhibit the synthesis of immunoglobulin G1 antibodies (Manetti et al., 1993). In contrast, IL-23 promotes the development of the newly recognized Th17 CD4+ T cell subset (Bettelli et al., 2007).

Three enzymes involved in glycolysis were found to be more abunda

Three enzymes involved in glycolysis were found to be more abundant in the bradyzoite [glyceraldehydes-3-phosphate (GAPDH), fructose-1,6-bisphosphate and enolase], fitting with the belief that bradyzoites rely primarily on anaerobic glycolysis for energy metabolism (34). In the same vein, isocitrate dehydrogenase (Krebs cycle) exhibited higher abundance in tachyzoites. RXDX-106 Additionally, two stress-related heat shock proteins (HSP70 and HSP90) were found to have higher expression in bradyzoites. Interestingly, both ROP9 and GRA9 were found to have greater expression in the bradyzoite stage,

although ROP9 has been previously shown as a tachyzoite-specific protein in Toxoplasma (65), and GRA9 has been associated with both stages (66). This preliminary study provides promising evidence that DIGE should be able to offer more clues as to the mechanisms behind tachyzoite–bradyzoite stage conversion in Toxoplasma, as well. DIGE has been used to examine how Toxoplasma infection modulates the host cell proteome. Nelson et al. (67) used 2DE and DIGE along with mass spectrometry to identify host cell proteins whose expression was modified by infection. Initial

proteomic comparisons were made between Saracatinib datasheet infected and noninfected human foreskin fibroblasts at time points ranging from 6 h post-infection (p.i.) to 24 h p.i., and protein samples were separated by 2DE. Spots of differentially expressed proteins were picked from the gels and identified via mass spectrometry. As 2DE studies are often plagued by inter-gel variations, DIGE analysis was performed to increase reproducibility and Meloxicam sensitivity of the proteome analysis. A total of 157 protein changes were documented

with the combined dataset from the 2DE and DIGE studies. Intriguingly, approximately one-third of the modulated proteins were mitochondrial proteins based on the ontology predictions. This suggests the importance of that host organelle in parasite infection, an implication that is further supported by the extensive association that the PVM forms with the mitochondria (68). Significant changes occur in the levels of host cell proteins pertaining to amino acid metabolism, lipid metabolism and glycolysis. In fact, six of the ten glycolytic enzymes are modulated by infection, including up-regulation of GAPDH. The levels of numerous apoptosis-related proteins were altered upon infection, including voltage-dependent anion channel (a mitochondrial VDAC) and numerous heat shock proteins (HSP27, HSP70). To determine whether the proteome changes were specific to Toxoplasma or were common to other intracellular parasites, a preliminary DIGE study of host response to Leishmania major (a nonapicomplexan parasite) infection was performed. There were considerable differences between those seen in the Toxoplasma infection, suggesting that the host response to Toxoplasma may be specific. Nelson et al.

Depletion of dendritic cells from CD3-activated PBMC or from unst

Depletion of dendritic cells from CD3-activated PBMC or from unstimulated PBMC reduced cancer cell destruction by approximately 50%. It has been reported that signals from activated CD4+ T cells enable dendritic cells to instruct bystander dendritic cells to prime naïve CD4+ T cells [50, 51]. However, CD3-activated T cells could not initiate this dendritic circuit without monocytes; furthermore, monocytes were required in unstimulated PBMC cultures that were added to CD3-activated PBMC. Depletion of monocytes from CAPRI cells immediately before their coculture with cancer cells did not significantly reduce lysis. However,

depletion of dendritic cells decreased cancer cell destruction by 50% (Fig. 5A, B). This suggests that dendritic cells may provide a continuous flow of cytokines EGFR inhibitor and/or of tumour-immunogenic information by building an information bridge between cancer cells and effector T cells to maintain cancer cell destruction by T effector

cells. Supplementary professional antigen presentation by activated dendritic cells may prevent rudimentary TCR signalling by cancer cells leading to multiple immunosuppressive effects, such as default secretion of IL-10 by Th1 cells [52]. Taken together, optimal priming for cancer destruction required cell-mediated bidirectional cooperation among a cellular quartet consisting of CD14+ monocytes, CD14−CD1a+CD83+ dendritic Staurosporine cost cells, CD4+ T cells and CD8+ T cells, whereas

a cellular trio comprising dendritic cells, helper T GDC-0449 mouse cells and cytotoxic T cells achieved optimal cancer cell lysis without monocytes. Carcinomas often escape from recognition by downregulating their own HLA expression [32, 33]. Increased HLA expression of cancer cells correlates with increased survival of patients [53–56]. Could CAPRI cells, which lyse HLA-restricted tumour cells, influence the HLA expression of cancer cells? Examination of CFSE-stained carcinoma cells showed that cocultured CAPRI cells did indeed increase the expression of HLA class I and class II molecules in autologous cancer cells (Fig. 3), and they most likely do so in many cancer types lysed by CAPRI cells (listed in Table 3, lysis not shown). Of particular note was the successful CAPRI cell-mediated lysis of carcinoma cells of Bowen’s disease. These intraepidermally growing carcinoma in situ cells are commonly recalcitrant to therapy because they are enveloped by fibroblasts. Less than 1% of Bowen’s cancer cells bound keratinocyte antibodies in cytospins (not shown). This cancer is an excellent example of the proposed inhibitory role of tumour stroma, as this stroma can prevent direct lysis by T cells [57].

Although more experimental data are needed to

resolve thi

Although more experimental data are needed to

resolve this question, epidemiological data documenting resistance in HESN sex workers suggests that repeated mucosal exposure and the associated cell infiltrates do not result in higher infectivity, but rather a sustained resistance against HIV-1 infection [1]. Further research utilizing animal models of SIV mucosal exposure would be helpful in elucidating if pathogen-induced DC activation at the site of exposure is associated with recruitment of NK cell activity and protection from HIV-1 infection in spite of the recruitment of CD4+ T cell targets. Most anti-viral mechanisms are expected to act both at preventing infection during exposure and in reducing viral replication after infection. However, adaptive MK-8669 supplier T cell responses may be more effective at control of viral replication after infection, as memory responses are probably amplified as CD8 T cell effectors only after infection is established. In contrast, NK cells remain an immune cell type associated with both resistance

to HIV-1 infection in HESN subjects and control over viral replication following infection. The case for the anti-viral capacity of NK subsets during infection is suggested by its loss of function in chronic infection. Progressive HIV disease is associated clearly with increasingly buy AZD3965 impaired NK responses and the selective depletion of CD56dim NADPH-cytochrome-c2 reductase NK cells during chronic HIV-1 infection [112–115]. The loss of CD56dim NK cells, the main circulating NK subset that mediates cytotoxicity, results in the enrichment of CD56null NK cells with decreased function [113,116–118]. HIV-1 replication also results in the altered expression of inhibitory and activating receptors on NK cells further impairing the lytic potential of the remaining NK pool [119–121]. Defects in the NK cell compartment have been hypothesized to

be part of the profound immunodeficiency observed during chronic HIV-1 infection and host susceptibility to opportunistic infections [122]. In contrast, NK frequency and IFN-γ production have been shown to be retained in HIV-1 long-term non-progressors [123]. HIV-1-infected elite controllers that suppress viral replication in the absence of anti-retroviral therapy also exhibit NK activity that is comparable to uninfected control donors [124]. Together, these results correlate an increasingly dysfunctional NK cell compartment after infection with loss in control over HIV-1 replication during chronic infection. Genetic studies of the KIR3DL1 locus in disease progression studies indicate that inheritance of KIR3DS1 and KIR3DL1high receptor alleles in conjunction with their HLA ligands can delay disease progression [87,125]. These genotypes are the same as those observed to be over-represented in a high-risk cohort of HESN i.v. drug users and HESN partners of HIV-1-infected subjects [17,28].