albicans DAY286 and Δhog1 overnight cultures were diluted in YPD to an OD600 of 0.2 in RIM or YPD medium. All cultures were incubated at 30°C until early exponential phase. After this period of growth, ferric reductase assay was performed according to [45] with minor modifications. Briefly, early exponential cells were washed once with Necrostatin-1 purchase MQ-H2O (4500 x g, 5 min, RT), resuspended in assay buffer (50 mM sodium citrate,
5% glucose, pH 6.5) and shaken in round bottom falcon tubes at 30°C for 15 check details min. FeCl3 and BPS were then added at a final concentration of 1 mM each, to give a final volume of 2 ml. Cells were incubated at 30°C for additional 5 min, pelleted (8000 x g, 3 min, RT) and the OD520 of the supernatant was determined (3 x 180 μl) (λ = 520 nm). The results are shown as percentage Selleckchem PRI-724 of DAY286 ferric reductase activity in YPD. Each experiment was performed three times. Viability test Viability of cells was measured using the AlamarBlue® assay (Invitrogen), which indicates particularly the metabolic activity of a culture. C. albicans cells were prepared as described in the flocculation
part and resuspended in 2 ml RPMI with addition of 30 μM FeCl3 or MQ-H2O at an OD600 of 0.1. Cells were incubated at 30°C for 60 min and immediately pelleted and washed once with MQ-H2O. The cells were resuspended in 2 ml MQ-H2O and 3 x 162 μl from each sample was added to 3 × 18 μl AlamarBlue® which were previously pipetted in three wells of a 96 well plate. The fluorescence intensity was quantified (t = 0) with the Synergy 4 fluorescence microtiter plate reader (BioTek Instruments GmbH) at an excitation
wavelength of 540 nm and an emission wavelength of 590 nm. The reagent was incubated at 30°C for 30 min and the fluorescence intensity was quantified again (t = 30 min). The difference to the values obtained at t = 0 was taken as indicator of the viability of the cells and the relative metabolic activity was calculated according to: Relative metabolic activity (%) = 100 PJ34 HCl × (RFUiron/RFUMQ-H2O). Experiments for reference strain (DAY286) and Δhog1 (JMR114) were performed three times (n = 3) in total and means of the three experiments were taken as final results. Experiment for the WT strain (SC5314) was performed once as a control. Acknowledgements The authors would like to thank Anja Meier and Beate Jaschok-Kentner from the proteomic facility of the Helmholtz Centre for Infection Research for performing mass spectrometric and protein sequencing procedures respectively. The authors would like to thank Rebeca Alonso-Monge (Universidad Complutense de Madrid, Spain) for providing hAHGI strain. Furthermore, HEJK would like to thank the Helmholtz International Graduate School for Infection Research for scientific support. This work was financially supported by the Federal Ministry of Education and Research of Germany (BMBF) through the project “The Lab in a Hankie – Impulse Centre for Integrated Bioanalysis”, no. 03IS2201.