Here, we present the crystal structures of an A-class complex bet

Here, we present the crystal structures of an A-class complex between EphA2 and ephrin-A1 and of unbound EphA2. Although these structures are similar overall to their B-class counterparts, they

reveal important differences that define subclass specificity. The structures suggest that the A-class Eph receptor/ephrin interactions involve smaller rearrangements in the interacting partners, better described by a ‘lock-and-key’-type binding mechanism, in contrast to the ‘induced fit’ mechanism defining the B-class molecules. This model is supported by structure-based mutagenesis and by differential requirements for ligand oligomerization by the two subclasses in cell-based Eph receptor activation assays. Finally, the structure of the unligated PXD101 nmr receptor

reveals a homodimer assembly that might represent EphA2-specific homotypic cell adhesion interactions.”
“Modafinil (2-[(Diphenylmethyl)sulfinyl] acetamide, Provigil) is an FDA-approved medication with wake-promoting properties. Pre-clinical BMN 673 research buy studies of modafinil suggest a complex profile of neurochemical and behavioral effects, distinct from those of amphetamine. In addition, modafinil shows initial promise for a variety of off-label indications in psychiatry, including treatment-resistant depression, attention-deficit/hyperactivity disorder, and schizophrenia. Cognitive dysfunction may be a particularly important emerging treatment target for modafinil, across these and other neuropsychiatric disorders. We aimed to

comprehensively review the empirical literature on neurochemical actions of modafinil, and effects on cognition in animal models, healthy Navitoclax research buy adult humans, and clinical populations. We searched PubMed with the search term ‘modafinil’ and reviewed all English-language articles for neurochemical, neurophysiological, cognitive, or information-processing experimental measures. We additionally summarized the pharmacokinetic profile of modafinil and clinical efficacy in psychiatric patients. Modafinil exhibits robust effects on catecholamines, serotonin, glutamate, gamma amino-butyric acid, orexin, and histamine systems in the brain. Many of these effects may be secondary to catecholamine effects, with some selectivity for cortical over subcortical sites of action. In addition, modafinil (at well-tolerated doses) improves function in several cognitive domains, including working memory and episodic memory, and other processes dependent on prefrontal cortex and cognitive control. These effects are observed in rodents, healthy adults, and across several psychiatric disorders. Furthermore, modafinil appears to be well-tolerated, with a low rate of adverse events and a low liability to abuse. Modafinil has a number of neurochemical actions in the brain, which may be related to primary effects on catecholaminergic systems. These effects are in general advantageous for cognitive processes.

Comments are closed.