BxPC-3 cells displayed also a dose dependency regarding the relat

BxPC-3 cells displayed also a dose dependency regarding the relative contribution of necrotic and apoptotic cell death. The response on cell viability upon incubation with TRD 250 μM for 24 hours was characterized by a mixed apoptotic

and necrotic effect whereas TRD 1000 μM was characterized by an exclusive and pronounced necrotic effect. This phenomenon became even more CBL-0137 obvious in AsPC-1 cells, were TRD 1000 μM led to a strong necrotic effect. The observed dose dependency of apoptotic and necrotic cell find more death is consistent with previous studies by others [27] as well as by our group [6, 26, 34]. The V-shaped dose effect was found in HT29 cells as well as in Chang Liver cells and was characterized by a dose response with maximal effects on cell viability and apoptosis with the intermediated concentration of TRD 250 μM whereas the highest (TRD 1000 μM) and lowest (TRD 100 μM) concentrations were less effective. This V-shaped dose effect has been described only once by our group [34]. However, to our surprise HT1080 cells presented in the current study with a anti-proportional SB-715992 dose effect with decreasing effects on cell viability and apoptosis

upon treatment for 24 h with increasing TRD concentrations. We can only speculate about the reason for this inverse proportionality. Our assays were repeated with nine consecutive passages, thus excluding biological assay variability

as a possible explanation for this unusual finding. The second part of the study comprised the evaluation of the contribution of reactive oxygen species (ROS) to TRD induced PCD by co-incubation experiments with either the radical scavenger N-acetylcysteine (NAC) or the glutathione depleting agent DL-buthionin-(S,R)-sulfoximine (BSO). Previous studies have presented first evidence for involvement of TRD mediated ROS production [9, 13, 36]. Furthermore, Tobramycin cell death induced by TRD has been shown to be reversible by application of radical scavengers like NAC [9, 12, 13, 36] and to be enhanced by inhibitors of ROS detoxification like BSO [9]. In our study, all cell lines except HT1080 fibrosarcoma cells responded to NAC co-incubation with an attenuation of TRD induced cell death. However, the magnitude of protection was divergent among cell lines ranging from partial protection (Chang Liver, AsPC-1, BxPC-3) to complete protection (HT29). To our surprise and in contrast to the available literature, HT1080 cells presented a completely contrary response to radical scavenging by NAC leading to enhancement rather than attenuation of TRD induced cell death. The biological cause behind this unexpected response pattern is currently unknown. However, ROS can be regarded as a “”double edged sword”" in terms of anti-neoplastic activity [37].

Comments are closed.