These predictions are consistent with the observed distribution patterns of the two life cycles in macroalgae. (C) 2010 Elsevier DihydrotestosteroneDHT Ltd. All rights
reserved.”
“The GABA(B) receptor is important for the function of auditory neurons. We used Western blotting and immunohistochemical methods to examine the level and localization of GABA(B)R2, a required subunit of a functional GABA(B) receptor, in the rat’s central auditory system. Results revealed that this subunit was expressed throughout the auditory system with the level being high in the layers I-V of the auditory cortex, medial geniculate nucleus, dorsomedial and lateral parts of the inferior colliculus, and the molecular and fusiform cell layers of the dorsal cochlear nucleus. Labeled cell bodies were found in all the areas showing immunoreactivity. Neuropil labeling was strong in areas with high overall levels of immunoreactivity. Regional distributions of the receptor subunit revealed clear boundaries of some auditory subnuclei including the dorsal and ventral cochlear nuclei and the lateral superior olivary nucleus. Differences in immunoreactivity were found between the central nucleus and the dorsal cortex of the inferior colliculus and between the dorsal and ventral parts of the ventral nucleus of the lateral lemniscus, although no clear boundaries were observed. No differences in immunoreactivity
were found between the core E7080 cost and the belt areas of the auditory cortex and among the subdivisions
of the medial geniculate nucleus. The regional distribution of the receptor subunit in auditory structures is consistent with inputs to these structures and the cellular localization of the receptor in auditory neurons supports the contribution TPCA-1 cell line of the GABA(B) receptor to synaptic responses in these neurons. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.”
“The locomotion of Caenorhabditis elegans exhibits complex patterns. In particular, the worm combines mildly curved runs and sharp turns to steer its course. Both runs and sharp turns of various types are important components of taxis behavior. The statistics of sharp turns have been intensively studied. However, there have been few studies on runs, except for those on klinotaxis (also called weathervane mechanism), in which the worm gradually curves toward the direction with a high concentration of chemicals; this phenomenon was discovered recently. We analyzed the data of runs by excluding sharp turns. We show that the curving rate obeys long-tail distributions, which implies that large curving rates are relatively frequent. This result holds true for locomotion in environments both with and without a gradient of NaCl concentration; it is independent of klinotaxis. We propose a phenomenological computational model on the basis of a random walk with multiplicative noise. The assumption of multiplicative noise posits that the fluctuation of the force is proportional to the force exerted.