6E). Interestingly, loss of CcnE2 resulted in an approximately 5-fold up-regulation of basal PDGF-Rβ expression, suggesting that quiescent CcnE2−/− HSCs are already primed for accelerated activation. We next compared CcnE1 mRNA expression levels in WT and CcnE2−/− HSC throughout the
transdifferentiation process. Interestingly, CcnE1 expression was significantly elevated in CcnE2−/− HSCs click here at all time points investigated (Fig. 6F). CcnE1 peak expression in WT cells was found at day 7 after seeding, whereas comparable expression levels were detected in CcnE2−/− HSCs between days 3 and 10. Interestingly, in both groups, maximal CcnE1 expression was detected before the first appearance of transdifferentiated,
α-SMA-positive myofibroblasts, suggesting that CcnE1 might be involved in HSC transactivation. We therefore performed expression analysis of HSC-derived profibrotic proteins, which confirmed the accelerated onset of α-SMA and collagen I expression in CcnE2−/− HSC, compared to WT controls (Fig. 7A). Of note, protein data could not be obtained from CcnE1−/− HSCs because of poor survival and thus low PLX3397 cost protein yields. To better characterize the findings in CcnE1−/− HSCs, we performed terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis of seeded HSCs from all groups and controls up to 10 days after isolation. These experiments revealed that CcnE1−/− HSCs were more prone to undergo apoptosis, which was not evident in CcnE2−/− cells or controls (Fig. 7B,C). Accordingly, CcnE1 is essential for triggering the proliferation, transdifferentiation, and survival of HSCs. Liver fibrosis is a chronic wound-healing process
leading to liver scarring and directing progressively deteriorating organ function. In this context, chronic liver injury triggers a proliferative response of hepatocytes, but also of nonparenchymal liver cells, including matrix-producing cells such as activated HSCs and myofibroblasts. Therefore, liver fibrogenesis involves the cell-cycle reentry of quiescent learn more cells, such as hepatocytes and HSCs. Surprisingly, little information exists on how cell-cycle mediators, such as cell-cycle–dependent kinases and cyclins, contribute to the progression of liver fibrosis.16 Genetic inactivation of single D-type (e.g., CcnD1-3) and E-type (e.g., CcnE1 and CcnE2) cyclins or their associated kinases (e.g., Cdk2, 4, and 6) did not affect general cellular processes, such as embryonic development, presumably because of overlapping or even redundant functions.17 However, it has been postulated that these cyclins and Cdks may also perform cell-type–specific functions,18 and in line with this hypothesis, we recently described nonredundant functions for CcnE1 and CcnE2 in hepatocytes during liver regeneration after PH.